mobile

Under the patronage of:

Journal Metrics


CiteScore: 2.8


More about CiteScore


Source Normalized Impact per Paper (SNIP): 0.579


SCImago Journal Rank (SJR): 0.4

 
SCImago Journal & Country Rank
 

Pre-treatment of acetic acid from food processing wastewater using response surface methodology via Fenton oxidation process for sustainable water reuse

Original scientific paper

Journal of Sustainable Development of Energy, Water and Environment Systems
ARTICLE IN PRESS (volume and issue assigned later), 1080363
DOI: http://dx.doi.org/10.13044/j.sdewes.d8.0363
Kowit Suwannahong1 , Surachai Wongcharee2, Jitporn Kreanuarte3, Torpong Kreetachart4
1 Department of Environmental Health, Faculty of Public Health, Burapha University, Chonburi 20131, Thailand
2 Field of Environmental Engineering, Faculty of Engineering, Mahasarakham University, Khamriang, Kantarawichai, Mahasarakham 44150, Thailand
3 Independent innovation expertise: BuaTong village, Karnjanapisake Rd. BangBuaTong, Nontaburi, 11110, Thailand
4 Department of Environmental Engineering, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand

Abstract

This study designed to optimize the operating parameters of the Fenton process in removing acetic acid from food processing using Response Surface Methodology module in the Design of Expert for sustainable water reuse. Optimum operating conditions needed for the highest removal efficiency of 95.2% and 84.7% for color and chemical oxygen demand respectively were found to be at hydrogen peroxide concentration of 0.004 mol/L, ferrous iron concentration of 0.02 mol/L, initial pH of 3.45, and reaction time of 149.08 min for color. While, chemical oxygen demand had a maximum of around 84.7% removal efficiency that could be obtained at a hydrogen peroxide concentration of 0.014 mol/L, ferrous iron concentration of 0.051 mol/L, initial pH of 2.04, and reaction time of 144.58 min. The results showed that the Fenton process via Response Surface Methodology, at a certain level, may be used as a useful technology for pre- and post-treatment of wastewater from food processing for water scarcity as reclaimed water.

Keywords: Acetic acid, Fenton process, Food processing, Respond surface method, Central composite design, Water reuse.

Creative Commons License
Views (in 2020): 225 | Downloads (in 2020): 139
Total views: 225 | Total downloads: 139

DBG