Sewage sludge co-digestion with mango peel liquor: impact of hydraulic retention time on methane yield and bioenergy recovery

Original scientific paper

Journal of Sustainable Development of Energy, Water and Environment Systems
ARTICLE IN PRESS (scheduled for Vol 11, Issue 03 (SDEWES 2022)), 1110454
DOI: https://doi.org/10.13044/j.sdewes.d11.0454 (registered soon)
Inês Silva1, Bruno Gouveia2, André Azevedo1, Edgar C. Fernandes2, Elizabeth Duarte3
1 Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Lisbon, Portugal
2 IN+ Centre for Innovation, Technology and Policy Research, Higher Technical Institute, University of Lisbon, Lisbon, Portugal
3 University of Lisbon, Lisbon, Portugal

Abstract

As the shift towards renewable energy sources continues, new approaches for energy recovery from sewage sludge must be established. This paper explores the feasibility of implementing full-scale co-digestion of municipal sewage sludge with fruit biowaste through the synergistic effects obtained at laboratory scale. The efficiency/stability of the process was studied for three hydraulic retention times. By using simple tools to evaluate the performance of the anaerobic digestion system, such as the specific methane indicator and the energy potential recovery indicator, it was shown that the shortest retention time of 13 days had the highest methane production and almost doubled the specific methane production, thus contributing to sustainable waste management and energy self-sufficiency of wastewater treatment plants.

Keywords: Biowaste valorisation; Energy potential recovery; Fruit waste; Self-sufficiency; Waste management; Wastewater treatment plant

Creative Commons License
Views (in 2023): 43 | Downloads (in 2023): 15
Total views: 43 | Total downloads: 15

DBG